Final Report

3M Brookings Ethylene Oxide Abator Engineering Test

LIMS Project Number: E16-0878 Method or Regulatory Requirement: ETS-8-031

Testing Laboratory

3M Environment, Health, Safety and Sustainability
Environmental Laboratory

3M Environmental Laboratory

Levon Trainor
3M Center
260-05-N-17
1-651-736-5065
ltrainor@mmm.com

3M Brookings

Paul Peterson 601 22nd Ave South Brookings, SD 57006 1-605-696-1445 p-peterson@mmm.com

The laboratory's quality system has been audited and was found to be in conformance with the EPA GLPs (40 CFR 792) as well as ANSI/ISO/IEC 17025:2005 by an independent assessment. The specific test included in this report is not on the lab's scope of accreditation.

Table of Contents

1	Introduction / Summary	3
2	Methods- Analytical and Preparatory	2
3	Analysis	5
4	Data/Sample Retention	5
5	Conclusion	5
_		,
6	Signatures	t
7	Attachments	-

3M EHSS Environmental Laboratory – Destruction Efficiency Engineering Test

Report Author: Levon Trainor

Analytical Team: Levon Trainor, Kelly Sater

3M Brookings Ethylene Oxide Abator Engineering Test LIMS Project Number: E16-0878

Date of Report: Date of Last Signature

1 Introduction / Summary

The destruction efficiency of the Ethylene Oxide abator at 3M Brookings was evaluated by Extractive FTIR Spectroscopy. The inlet and outlet gases of the abator were sampled simultaneously with two MKS FTIR spectrometers measuring the gas phase concentrations of Ethylene Oxide. Sampling was performed for the duration of 3 runs. Destruction efficiency was determined using inlet & outlet concentrations - averaged over the portion of the run when ethylene oxide was above the detection limit of 0.24PPMv. Inlet and Outlet airflows were assumed to be equal.

Formaldehyde was also observed in the outlet stream with a maximum concentration of 3.1 PPMv.;

1.1 Destruction Efficiency Results and Discussion

Table 1 Average Concentration and Destruction Efficiency Results

	Run 1	Run 2	Run 3
Date	11/8/2016	11/8/2016	11/8/2016
Start Time	8:35	11:00	12:45
Conditions	Standard	Standard	Standard
Inlet Concentrations (ppmV)			
Ethylene Oxide	820	1000	1100
Outlet Concentrations (ppmV)			
Ethylene Oxide	1.9	1.2	0.74
Ethylene Oxide Destruction Efficiency	99.8%	99.9%	99.9%

2 Methods- Analytical and Preparatory

Analysis was performed according to a procedure of ETS-8-31.3 "Measurement of Vapor Phase Compounds by Fourier Transform Infrared (FTIR) Spectrometry", which is based on NIOSH 3800 and EPA Method 320.

The project quality level for this study was designated as "Level Two: Quantitative Monitoring". Project Quality Level 2 (PQL 2) is appropriate for emission factor estimates and non-compliance test measurements. PQL 2 is appropriate when the project objectives specify the data will not be incorporated in compliance tests of manufacturing emissions, but can be used in certain environmental permitting and regulatory activities such as emission factor estimation.

2.1 Instrumentation

An FTIR with a 5.11 meter nominal pathlength gas cell was used for the analysis. Table 2 gives sampling and configuration parameters of the instrument(s) used:

Instrument Name	4MKS	6MKS
Model	MKS MG2030	MKS MG2030
Date Analyzed	11/8/2016	11/8/2016
Nominal Pathlength (m)	5.11	5.11
FTIR Cell Temperature (°C)	35	35
Number of Co-added Background Scans	128	128
Number of Co-added Sample Scans	64	64
Scan Range (cm-1)	650–4500	650-4500
Resolution (cm-1)	0.5	0.5

Table 2 Instrument Parameters

2.2 Calculations

2.2.1 AutoQuant Results

Results generated using the AutoQuant[™] (v4.5) or MG2000 (v7.2) software are reported in ppmv (parts per million by volume). The software was used in conjunction with Midac, EPA, PNNL, MKS, and 3M library reference spectra, and manual subtraction of reference spectra in Thermo GRAMS/AI and/or MG2000.

These results are converted to µg using the following equation:

$$\mu g = \frac{Concentration (ppm_v) \times Sample \ Gas \ Volume(L) \times Pressure \ (atm) \times Molecular \ Weight \ \left(\frac{g}{mol}\right)}{0.08206(L \times atm \times K^{-1} \times mol^{-1}) \times Cell \ Temperature(K)}$$

Where Sample Gas Volume (L) = total chamber compressed house air purge gas volume during sample off-gassing or the volume of the gas cell.

2.2.2 Manual Subtraction

The concentration of a target analyte in a sample FTIR spectrum was verified using manual subtraction of a reference spectrum from the sample spectrum by means of Thermo GRAMS or MG2000 software. The relative fraction of the reference spectrum, or subtraction factor, is then used to calculate the concentration of the sample in ppmv using the following equation.

$$ppm_v = \frac{subtraction\ factor \times reference\ concentration\ at\ cell\ temp\ (ppm_v \cdot m)}{pathlength\ of\ cell\ (m)}$$

2.2.3 Limit of Quantitation

The limit of quantitation was estimated by manual addition of the analyte quantitative reference spectrum to the sample spectrum. Using the Thermo GRAMS or MG2000 software program, the reference spectrum was added until the analyte signal was approximately two times greater than the surrounding noise. The resulting addition (negative subtraction) factor was used to calculate a ppmv concentration using the equation listed in 2.2.2.

3 Analysis

3.1 Calibration

The instrument was calibrated using a 20.0 ppm certified (see Attachment 7.4) standard of ethylene (cylinder # SG9182087BAL). The instrument gas cell pathlength was determined before and after sampling. (see Attachment 7.3)

3.2 Blanks

Before and after each sample run, the sample-cell was checked for contaminants.

4 Data/Sample Retention

This report and all associated data will be archived and retained according to record retention policy.

5 Conclusion

Matrix spiking was not required for this project. Therefore the uncertainty of the gas phase concentration of the given chemicals as measured using FTIR is +/- 17% and is based on 2 times the standard deviation of the most recent 54 recovery values measured in the ISO 17025 FTIR proficiency testing of 3M Environmental Lab FTIR operators.

Results are only valid for the run conditions from the day of testing.

6	Signatures
	Levon Trainor, Project Engineer
	Brian Mader, Environmental Laboratory Management

7 Attachments

7.1 Sample Collection Data Sheet(s)

Environmen			Poro inlle			0.00	noic	Signal 4K(c	<u> </u>	0.2	Signal 2K(cm ⁻¹):	0.8	25%
Lab Req. No:			Baro, inHg:		DE	0.00	psia			0.2			
Project Name:	40.4	V.C.		ngs Abator			(0)	Test Loc:	(1)	(0)	CTS Cyl S.N.:	SG91820	57BAL
Computer ID:	KHS	KS	FTIR ID: Date:		4MKS 11/8/2016		(2)			(3)			
Operator (s): Ref. Method:	KIIC	ETS 8.31	Date.				(4)	(2) Ouantati	110	(5)	(4) Validation		
Collection Dir:			8Novembe	Quality Lev		(1) Screen Meth Nam		(2) Quantati	ve	(3) Comp	(4) Validation Inst. Res(cm ⁻¹):	0.5	
Scans, BG/Samp:	64	128	Time/Samp					Pathlength, m:	5.11				
-				1					Tube I	D in., length ft	r actirongeri, m.	0.110	0.0000
	Initial, atm:	0.481	Time:		1	Final, atm:		481	Time:	7:27	Diff, atm, min:	0	5
Cell Vol, L:	0.209	Tubing Vol,		System Vol			Leak Vol/r			0.0000	Pass, <4%:	0.000	
	Initial, atm:	r domig v or,	Time:	System v en		Final, atm:			Time:	0.0000	Diff, atm, min:	0	0
Cell Vol, L:	Trittal, altri	Tubing Vol,		System Vol			Leak Vol/r	nin [.]		#DIV/0!	Pass, <4%:	#DIV	
· · · · · · · · · · · · · · · · ·		Test	0.000	<i>5,</i> 3.311 ¥ 01	,	3.0000	v 0i/I					Cell Pressure	Cell Tem
File Name(s)	Time (24hr)	Location				Sample D	Description				Flow (LPM)	(psia)	(deg C)
BG1	7:30	1					ound Air				1	0.98	35
LAB2-6	7:32	1					Air				1	0.98	35
LAB7-17	7:38	1			SG91		0.0 ppm et	hylene			1	0.98	35
LAB18-337	7:43	1					Air				1	0.98	35
-	-	-		run 1 started @ 8:35					-	-	-		
-	-	-		run 2 started @ 11:00					-	-	-		
-	-	-		run 3 started @ ~ 12:45				-	-	-			
LAB338-345	13:55	1				20.0 ppm	ethylene c	<u>al</u>			1	0.98	35

3M 🛘 Environmental Health & Safety Operations-Environmental Lab 3M Center, Building 260-5N-17, Maplewood, MN 55144

Rev - 3/7/11

Lab Req. No:			Baro, inHg:			0.00	psia	Signal 4K(d	n		Signal 2K(cm ⁻¹):		#DIV/0!
Project Name:				ngs Abator	DE		F	Test Loc:	(1)	nlet	CTS Cyl S.N.:	SG91820	
omputer ID: 6MKS FTIR ID:			<u> </u>	6MKS		(2)		. ,	(3)	,			
Operator (s): KHS/LT Date:			,	11/8/2016		(4)			(5)				
Ref. Method:		ETS 8.31		Quality Lev	el:	(1) Screen		(2) Quantati	ive (3) Comp	(4) Validation		
Collection Dir:		6MKS_0	08Novemb	er2016		Meth Nam					Inst. Res(cm ⁻¹):	0.5	,
# Scans, BG/Samp:	64	128	Time/Samp	le, min:	1.1	2.1	Sampling I	nterval:			Pathlength, m:	5.11	00
Cells: PL,Vol	0.5cm, 0.0006	1cm, 0.0113	5cm, 0.0567	10cm, 0.113	4m, 0.209	10m, 2.13	Tape, 5.7	Parr, 0.636	Tube, I	Oin., length ft			0.0000
_eak Check:	Initial, atm:	0.914	Time:	7::	26	Final, atm:	0.	914	Time:	7:31	Diff, atm, min:	0	5
Cell Vol, L:	0.209	Tubing Vol,	0.000	System Vol	, L:	0.2090	Leak Vol/n	nin:		0.0000	Pass, <4%:	0.000	00
.eak Check:	Initial, atm:		Time:			Final, atm:			Time:		Diff, atm, min:	0	0
Cell Vol, L:		Tubing Vol,	0.000	System Vol	, L:	0.0000	Leak Vol/n	nin:	#	DIV/0!	Pass, <4%:	#DIV	/0!
File Name(s)	Time (24hr)	Test Location				Sample D	escription				Flow (LPM)	Cell Pressure (psia)	Cell Tem (deg C)
LAB1	7:34	1					de Air				5	36.00	0.89
BG2	7:35	1			Ba	ackground	l Outside	Air			5		
LAB3-5	7:39	1					de Air				5		
LAB6	7:42	1		20.0ppmV Ethylene						1			
LAB12	7:51	1		Outside Air						5			
-	8:35	1		Start of									
LAB63-	8:43	1		Inlet /									
LAB195-	11:00	1				Start o	f Run 2						
-	-	-				For Rur	2: 365F						
LAB374-	13:57	1				20.0ppm\	/ Ethylen	Э			1		
LAB379-	14:05	1				Inle	t Air				5		

3M 🛘 Environmental Health & Safety Operations-Environmental Lab 3M Center, Building 260-5N-17, Maplewood, MN 55144

Rev - 3/7/11

7.2 AutoQuant/MG2000 Methods

The MG2000 method will be archived with this report.

7.3 Pathlength Determination and Calibration Check

Inlet	Spectrum	Date	Time	ETHYLENE 35C
Pretest	6MKS_0007.LAB	11/8/2016	7:45:	38 19.7962
	6MKS_0008.LAB	11/8/2016	7:46:	38 19.817695
	6MKS_0009.LAB	11/8/2016	7:47:	38 19.74312
	6MKS_0010.LAB	11/8/2016	7:48:	38 19.76862
	6MKS_0011.LAB	11/8/2016	7:49:	38 19.818126
			AVG	19.7887522
Inlet	6MKS_0376.LAB	11/8/2016	14:01:	18 19.976921
PostTest	6MKS_0377.LAB	11/8/2016	14:02:	18 20.01599
	6MKS_0378.LAB	11/8/2016	14:03:	18 19.989868
	6MKS_0379.LAB	11/8/2016	14:04:	18 19.918967
			AVG	19.9754365
			Pre vs Post % Difference	<u>-0.94338591</u>
	Spectrum	Date	Time	ETHYLENE 35C
Outlet	4MKS0013.LAB	11/8/2016	7:40:	38 19.600812
Pretest	4MKS0014.LAB	11/8/2016	7:40:	19.542298
	4MKS0015.LAB	11/8/2016	7:41:	08 19.57544
	4MKS0016.LAB	11/8/2016	7:41:	23 19.563096
	4MKS0017.LAB	11/8/2016	7:41:	38 19.588237
			AVG	19.5739766
Outlet	4MKS0341.LAB	11/8/2016	13:57:	15 19.429483
PostTest	4MKS0342.LAB	11/8/2016	13:57:	30 19.492449
	4MKS0343.LAB	11/8/2016	13:57:	45 19.542662
	4MKS0344.LAB	11/8/2016	13:58:	00 19.505138
	4MKS0345.LAB	11/8/2016	13:58:	15 19.46146
			AVG	19.4862384
			Pre vs Post % Difference	<u>0.448239015</u>

7.4 Calibration Gas Certification

Oxygen Service Company, Inc.

"An Employee Owned Company"
1111 PIERCE BUTLER RTE
ST. PAUL, MN 55104
(651)644-7273
FAX(651)644-2973

Certificate of Analysis

11719-33546

PURCHASE ORDER: 14-329TK CYLINDER # SG9182087BAL

COMPONENT	CAS NUMBER	REQUESTED CONCENTRATION Mole	ACTUAL CONCENTRATION Mole	UOM	ACCURACY +/-
ETHYLENE	74-85-1	20	20.0	ppm	1%
NITROGEN	7727-37-9	Balance	Balance	%	

METHOD OF ANALYSIS: GAS CHROMATOGRAPHY/GRAVIMETRIC

CYLINDER PRESSURE : 2015 PSIA CYLINDER CONTENTS : 138 SCF

SHELF LIFE: 36 MONTHS PRODUCED: 11/25/2014 EXPIRES: 11/25/2017

THIS MIXTURE WAS MADE TO A MINIMUM OF +/-1% ACCURACY USING SCALES THAT HAVE MONTHLY CARIBRATION CHECKS FOR PROCESS CONTROL PURPOSES. SCALES ARE CALIBRATED TWICE A YEAR BY "ALLOMETRICS" WITH N.I.S.T. TRACEABLE WEIGHT SET 610. NIST TRACEABLE TEST 740801-1. THIS CALIBRATION PROCEDURE IS DEFINED IN MIL. STD 45662.

ANALYST

7.5 Peer Review

E16-0878 Peer Review

Review Analysis. A representative subset of sample spectra was peer reviewed by Tim Gutzkow. Specifically a review of the following spectral file(s) was done:

			Formaldehyde			Pressure
Spectrum	Date	Time	35c	EtOv3	Temp (C)	(Atm)
6MKS_0101.LAB	11/8/2016	9:22:43	-0.218049	1430.735	35.67534	0.900963
TGG Results				1453		
% Difference				-1.6 %		
9						
			Formaldehyde			Pressure
Spectrum	Date	Time	35c	EtOv3	Temp (C)	(Atm)
4MKS0072.LAB	11/8/2016	9:24:44	3.801018	4.885826	35.66132	0.938058
			3.862	4.75		
% Difference			-1.6 %	2.78 %		

Signature and Date:

1-3-17

7.6 General Project Outline

EHS Laboratory General Project Outline

To: Paul Peterson – 3M Brookings From: Levon Trainor – 3M EHS Laboratory CC: Brian Mader – 3M EHS Laboratory

> Kelly Sater – 3M EHS Laboratory Tim Gutzkow – 3M EHS Laboratory

Date: 11/3/2016

Subject: 3M Brookings Abator Efficiency Test - General Project Outline

Project Objective:

The objective of this project is to conduct a test of destruction efficiency of the 3M Brookings Ethylene Oxide Abator using Extractive FTIR. The testing will be performed to validate that the new catalyst is performing as expected. GC/PID may also be used for testing at discretion of environmental lab field team.

Project Requested by: Project Coordinated by:

Paul Peterson **Levon Trainor** 3M Brookinas **EHS Laboratory Analyst** Dept. Number: 104180 1-651-736-5065 1-605-696-1445 ltrainor@mmm.com

p-peterson@mmm.com

> Test and Reporting Summary

3M Brookings Test Location

Process/Run Parameters Normal abator operating conditions with new catalyst replacement.

Ethylene Oxide Target Analytes

Test Schedule Testing week of 11/7/2016

Estimated Report Date 12/14/2016

> Report to: Paul Peterson

Reporting Requirements Detailed Report with supporting appendices

Report Classification Confidential

> Safety

EHS Laboratory personnel will adhere to the stricter of the EHS Laboratory safety policy or the safety policy of the test location.

Project Cost

Actual project costs are determined on a time and materials basis in accordance with the existing 3M EHS Laboratory contract.

Estimated Cost N/A

*Note: A portion or all of the in-house testing cost may be charged directly to the EHS&S Operations department as a corporate operating expense).

- > Test Methods
- 1. Speciated FTIR Analysis Modified EPA Method 320 (3M EL SOP ETS-08-31)

Assigned Project Quality Level: PQL2

The Environmental Laboratory maintains A2LA accreditation to ISO/IEC 17025 for the specific tests/calibrations as listed in A2LA Certificate #2052-01. The test results for FTIR analysis included in this project are covered by this accreditation.